
External sorting 10
Summary: External sorting is needed if a file cannot be sorted in memory because
available memory is too small or the file is too large, and so mass storage must
be used as a medium for sorting. The elements of the STL are used to construct an
iterator for sorted subsequences which is used for external sorting. A priority queue
can accelerate the sorting process.

To start with, the following questions should be answered to establish whether ex-
ternal sorting can be avoided:

• Is the entire available RAM used as virtual memory without having to swap
memory pages?

• Can keys and an index file be used? For example, an address file could be sorted
by using only the names for sorting. Then, the index file contains only the sorted
names and, for each name, a pointer to the location of the complete address file,
where all other information, such as street and town, can be found.

Copy processes in mass storage are very expensive compared to copy processes
in RAM. When memory access takes 50 nanoseconds, and hard disk access 10
milliseconds, then the mass storage is slower by a factor of 200 000, if no buffer
is used. When all else fails, it could be helpful to divide the problem into smaller
subproblems:

1. The large file of N elements is split into n small files of approximately equal size,
where n is chosen in such a way that the small file fits into memory.

2. All small files are sorted separately.

3. The sorted files are merged back into one large file. Section 5.5.4 describes how
two sorted subsequences are merged into one single sorted sequence.

10.1 External sorting by merging
Step 3 above hardly consumes any memory because only n elements are read and
compared. However, the operating system creates a buffer for each open file, which



222 EXTERNAL SORTING

can amount to a considerable quantity of memory. Frequently, the maximum number
of open files allowed is also insufficient for this purpose.

Therefore, the process is modified: the large file F is only split into two tempo-
rary auxiliary files t1 and t2 which are again put together in a large file with a higher
degree of sorting. The files F , F ′, and so on are the same; they are reused. The same
applies to t1 and t2. Therefore, someone with a little foresight creates a backup copy
of F .

This process is repeated with the new file until sorting is achieved (see Figure
10.1). Thus, you only need a total of three files. You could, however, take more than
two files for splitting. The only important point is that the temporary files contain
sorted subsequences which are merged into each other. A sorted subsequence is also
called run.

F -

t1

t2

?

6

-

-

- F ′ -

t′1

t′2

-

-

?

6

-

6
6

split merge

6
6

split merge

Figure 10.1: External sorting with two runs shown.

As an example, an unsorted sequence of 17 numbers is to be sorted in ascending
order into a file. The numbers are:

F : 13 44 7 3 3 9 99 37 61 71 2 6 8 11 14 15 1

This sequence is split into the auxiliary files in such a way that sorted subse-
quences are maintained. These are shown by way of square brackets:

F : [13 44] [7] [3 3 9 99] [37 61 71] [2 6 8 11 14 15] [1]

Splitting yields:

t1 : [13 44] [3 3 9 99] [2 6 8 11 14 15]
t2 : [7] [37 61 71] [1]

The first two subsequences of t2 can be considered as one sorted subsequence:

F : [13 44] [7] [3 3 9 99] [37 61 71] [2 6 8 11 14 15] [1]
t1 : [13 44] [3 3 9 99] [2 6 8 11 14 15]
t2 : [7 37 61 71] [1]

Now, the subsequences of the auxiliary files are merged, resulting in the new file
F . Merging is carried out in the sense of Section 5.5.4: when one subsequence is
exhausted, the remainder of the other subsequence is copied.



EXTERNAL SORTING BY MERGING 223

merge:
F : [7 13 37 44 61 71] [1 3 3 9 99] [2 6 8 11 14 15]

Further split and merge operations yield:

split:
t1 : [7 13 37 44 61 71] [2 6 8 11 14 15]
t2 : [1 3 3 9 99]

merge:
F : [1 3 3 7 9 13 37 44 61 71 99] [2 6 8 11 14 15]

split:
t1 : [1 3 3 7 9 13 37 44 61 71 99]
t2 : [2 6 8 11 14 15]

merge:
F : [1 2 3 3 6 7 8 9 11 13 14 15 37 44 61 71 99]

Thus, only three runs with one split and one merge process each are needed. A
closer analysis shows that for a file of N elements, a total of about log2 N − 1 runs
is needed. Each run means N copy processes (read + write), so that the total cost is
O(N log N). Later, we will see how we can accelerate this process. Those who find
the description too brief should refer to the ‘essential’ Wirth (1979).

Thus, we have three files, which can also be magnetic tapes, and two passes,
namely splitting and merging. Therefore, the method is called 3-way 2-pass sort-
merge. When we talk about merging and tapes, it is understood that only sequential
access to individual elements is possible. An algorithm for external sorting must take
this into account.

The following main() program calls a function for external sorting. The file is
arbitrarily called random.dat and contains numbers of type long.

// k10/extsort.cpp Sorting of a large file
#include"extsort.h" // see below
#include<functional> // greater<>, less<>
using namespace std;

int main() {

// less<long> Comparison; // descending
std::greater<long> Comparison; // ascending
std::istream_iterator<long> suitable_iterator;

std::cout << externalSorting(

suitable_iterator, // type of file
"random.dat", // file name
"\n", // separator
Comparison) // sorting criterion

<< " sorting runs" << std::endl;

}

The function returns the number of necessary runs. Since no information on the
type of elements can be derived from the file name, a suitable iterator is passed



224 EXTERNAL SORTING

whose type contains the necessary information. The separator string is inserted be-
tween two elements which are written to a temporary file, because this example uses
the >> operator for input and the << operator for output. The comparison object
determines the sorting criterion. The components needed for this algorithm are de-
scribed individually.

One important component is an iterator that works on a stream and recognizes
subsequences. This iterator will be called SubsequenceIterator. It inherits from
the class istream_iterator which is described on page 38. The subsequence iter-
ator behaves in the same way as an istream_iterator, but in addition determines
whether the elements of the stream are sorted according to the sorting criterion comp.
This requires a comparison between a read object and the previous one which here
is a private variable named previousValue.

// Template classes and functions for sorting of large files
// k10/extsort.h
#ifndef EXTSORT_H

#define EXTSORT_H

#include<fstream>

#include<algorithm>

#include<iterator>

template<class T, class Compare>

class SubsequenceIterator : public std::istream_iterator<T>

{

public:

typedef T value_type; // public type

SubsequenceIterator()

: comp(Compare()) {

}

SubsequenceIterator(std::istream& is, const Compare& c)

: std::istream_iterator<T>(is), comp(c), sorted_(true),

previousValue(std::istream_iterator<T>::operator*()) {

}

/*The private attribute previousValue can be initialized with value, because
the initialization of the base class subobject has already read a value. The follow-
ing ++ operators now ensure that the end of a sorted subsequence is recognized by
setting the private variable sorted_. A subsequence is in any case also closed
when the stream is terminated. This is checked by comparing the subsequence
iterator (i.e. *this) to an end-iterator which is generated by the default construc-
tor.



EXTERNAL SORTING BY MERGING 225

It is important to write !comp(previousValue, value) and not
comp(value, previousValue). The second notation would erroneously
already signal the end of a subsequence when two equal elements follow each
other. You can easily imagine this by assuming, for example, Compare ==
less<int>.

*/

SubsequenceIterator& operator++() {

std::istream_iterator<T>::operator++();

const T& value

= std::istream_iterator<T>::operator*();

sorted_ = !comp(previousValue, value) // right order
// end not yet reached?

&& *this != SubsequenceIterator<T, Compare>();

previousValue = value;

return *this;

}

SubsequenceIterator operator++(int) {

SubsequenceIterator tmp = *this;

operator++();

return tmp;

}

bool sorted() const { return sorted_;}

/*When the end of a subsequence is recognized, the internal flag for this can be reset
with nextSubsequence() to process the next subsequence:

*/

void nextSubsequence() {

sorted_ = *this != SubsequenceIterator<T, Compare>();

}

Compare Compareobject() const { return comp;}

/*Compareobject() supplies a copy of the internal comp object. In addition to
the inherited variables, the following ones are needed:

*/

private:

Compare comp;

bool sorted_;

T previousValue;

};

Next, the function externalSorting() is described, which constitutes the user
interface in main(). This function determines the type of the values by means of the
iterator_traits-class.

template<class IstreamIterator, class Compare>

int externalSorting(IstreamIterator& InputIterator,



226 EXTERNAL SORTING

const char *SortFile,

const char *Separator,

const Compare& comp) {

typedef typename std::iterator_traits<IstreamIterator>

::value_type value_type;

bool sorted = false;

// arbitrary names for intermediate files
const char *TempFile1 = "esort001.tmp",

*TempFile2 = "esort002.tmp";

int Run = 0; // number of split/merge-runs
do {

std::ifstream Inputfile(SortFile);

SubsequenceIterator<value_type, Compare>

FileIterator(Inputfile, comp);

/*The file to be sorted must exist. A suitable subsequence iterator for reading
is passed to the function split() which writes sorted subsequences of the
main file F , as it was called earlier, into the two auxiliary files t1 and t2.

*/

split(FileIterator, TempFile1, TempFile2, sorted);

Inputfile.close();

/*During this process, split() determines whether F is already sorted. Only
if this is not the case are further steps necessary. These steps consist in gener-
ating subsequence iterators for the function mergeSubsequences() and
opening the output file F ′. Then, the subsequences are merged.

*/

if(!sorted) {

// prepare for merging
std::ifstream Source1(TempFile1);

std::ifstream Source2(TempFile2);

SubsequenceIterator<value_type,Compare>

I1(Source1,comp),

I2(Source2,comp),

End;

// open SortFile for writing
std::ofstream Output(SortFile);

std::ostream_iterator<value_type>

Result(Outputfile, Separator);

mergeSubsequences(I1, End, I2, End, Result, comp);

++Run;

}

} while(!sorted);

return Run;

}



EXTERNAL SORTING BY MERGING 227

The function mergeSubsequences() has the same interface as the standard
function merge() (see page 130). merge() cannot be used because merge() ex-
tracts one element at a time via the input iterators according to comp, but ignores the
subsequence structure.
// SubSeqIterator is a placeholder for the data type of a subsequence-iterator
template<class SubSeqIterator>

void split(SubSeqIterator& InputIterator,

const char *Filename1,

const char *Filename2,

bool& sorted) {

std::ofstream Target1(Filename1);

std::ofstream Target2(Filename2);

typedef typename SubSeqIterator::value_type value_type;

std::ostream_iterator<value_type> Output1(Target1, "\n");

std::ostream_iterator<value_type> Output2(Target2, "\n");

SubSeqIterator End;

/*The functioning is quite simple: as long as the input stream supplies a sorted sub-
sequence, all data is written to an output stream. Once the end of a sorted subse-
quence is reached, flipflop is used to switch to the other output stream. In or-
der to save the caller unnecessary work, the variable sorted remembers whether
there has been any violation of the sorting order in the input stream.

*/

sorted = true;

bool flipflop = true;

while(InputIterator != End) {

while(InputIterator.sorted())

if(flipflop) *Output1++ = *InputIterator++;

else *Output2++ = *InputIterator++;

if(InputIterator != End) {

sorted = false;

flipflop = !flipflop;

InputIterator.nextSubsequence();

}

}

}

/*After splitting a file into two temporary auxiliary files, the file is rebuilt on a ‘higher
sorting level’ by merging the auxiliary files.

*/

template <class SubsequenceIterator, class OutputIterator,

class Compare>

void mergeSubsequences(SubsequenceIterator first1,

SubsequenceIterator last1,

SubsequenceIterator first2,

SubsequenceIterator last2,



228 EXTERNAL SORTING

OutputIterator result,

Compare& comp) {

// as long as both the auxiliary files are not exhausted
while (first1 != last1 && first2 != last2) {

// merge sorted subsequences
while(first1.sorted() && first2.sorted())

if (comp(*first1, *first2))

*result++ = *first2++;

else

*result++ = *first1++;

// At this point, (at least) one of the subsequences is terminated.
// Now copy the rest of the other subsequence:
while(first1.sorted()) *result++ = *first1++;

while(first2.sorted()) *result++ = *first2++;

// Process the next subsequence in both auxiliary files,
// provided there is one:
first1.nextSubsequence();

first2.nextSubsequence();

}

// At least one of the temporary files is exhausted.
// Copy the rest of the other one:
std::copy(first1, last1, result);

std::copy(first2, last2, result);

}

10.2 External sorting with accelerator
External sorting is designed only for sorting processes where the internal memory
of the computer is not sufficient. However, (almost) no memory was used in the
above program. The best solution for external sorting is to employ as much internal
memory as possible.

An ideal tool for this purpose is the priority queue presented in Section 4.3. It has
the property of putting all incoming elements into the correct position, so that when
one element is removed, the one with the highest priority according to the sorting
criterion is immediately available, for example, the greatest element.

If the priority queue can take Np elements, then for all input files F with Np

or less elements, only one sorting run is needed. For larger input files, the priority
queue allows longer sorted subsequences, so that fewer runs are needed. It is evident
that the effect of a priority queue diminishes when the subsequences to be processed
are longer than the size of the priority queue. For this reason, the effect of a priority
queue is that in the first run, subsequences of a length ≥ Np are already generated,
thus saving (log2 Np − 1) runs. At least one run is needed.



EXTERNAL SORTING WITH ACCELERATOR 229

The complexity of external sorting does not change when a priority queue is
employed. Since, however, copy operations to mass storage are time-consuming, the
saving of constant (log2 Np − 1) runs is very desirable.

When placing and using the priority queue in the data flow, care must be taken
not to use it directly as a sorting filter. The reason for this is that the initial fast
generation of long subsequences would become impossible. tip

Let us assume that the number of elements in a file substantially exceeds Np and
that the sorting criterion is to generate a descending sequence, that is, the greatest
element is removed from the priority queue. This removal frees a place, and the next
element is inserted into the priority queue. This element, however, can be greater
than the element just removed, so that the subsequence of removed elements is im-
mediately terminated.

Figure 10.2 shows that to achieve the longest possible subsequences, the priority
queue is used inside the splitting process.

F
-
-

t1

t2

?

6

-

-

-

6

merge

priority-queue

split

-

Figure 10.2: External sorting with priority queue.

The decisive factor is that the read elements are not simply passed sorted. Instead,
reading of an element greater than the one that stands at the top of the priority queue
must lead to the whole priority queue being emptied. Only then can the new element
be inserted. As can be seen from the figure, this involves the split() function
whose modified variation is shown as a conclusion. #include<algorithm> can
now be omitted, since copy() is no longer used. Instead,

#include<vector>

#include<queue>

are required if the priority queue is to be implemented with a vector. Since the pri-
ority queue must know not only the data type of the elements, but also the sorting
criterion, the function determines the necessary types from the type of the passed
subsequence iterator.

In the example below (function split()), the size of the priority queue is speci-
fied as 30 000: depending on the computer type, memory size, and operating system,



230 EXTERNAL SORTING

it should, on the one hand, be set as large as possible; on the other hand, it should
still be small enough not to need memory swapping to hard disk.

There is no member function capacity() for the priority queue of the STL,
which would return the capacity of the underlying container. Unfortunately, such a
function is not easy to write, because it strongly depends on the operating system.

How much space can be allocated to the program depends on the current usage
of the computer by other users and programs, and can therefore only be determined
at a given time. Information on the amount of available memory can be given only
by the operating system. Therefore, it is best to allocate the program a guaranteed
amount of memory at the call.

template<class SubSeqIterator>

void split(SubSeqIterator& InputIterator,

const char *Filename1,

const char *Filename2,

bool& sorted) {

typedef typename SubSeqIterator::value_type value_type;

typedef typename SubSeqIterator::compare_type Compare;

const size_t maxSize = 30000; // maximize, see text

// The size of the priority queue is dynamically increased
// up to the given limit (see below)
std::priority_queue<value_type,

std::vector<value_type>,

Compare>

PQ(InputIterator.Compareobject());

std::ofstream Target1(Filename1);

std::ofstream Target2(Filename2);

std::ostream_iterator<value_type> Output1(Target1, "\n");

std::ostream_iterator<value_type> Output2(Target2, "\n");

SubSeqIterator End;

sorted = true;

bool flipflop = true; // for switching the output

while(InputIterator != End) {

// fill priority queue
while(InputIterator != End && PQ.size() < maxSize) {

if(!InputIterator.sorted())

sorted = false;

PQ.push(*InputIterator++);

}

while(!PQ.empty()) {

// Write to output files. Selection of file
// by way of the variable flipflop



EXTERNAL SORTING WITH ACCELERATOR 231

if(flipflop) *Output1++ = PQ.top();

else *Output2++ = PQ.top();

// create space and fill if needed
PQ.pop();

if(InputIterator != End) {

if(!InputIterator.sorted())

sorted = false;

// The next element is inserted only if it does not
// violate the subsequence ordering.
if(!InputIterator.Compareobject()

(PQ.top(), *InputIterator))

PQ.push(*InputIterator++);

}

}

// The priority queue is now empty; the sorted sequence
// output is terminated. For outputting the next sorted
// sequence we switch to the next channel.
flipflop = !flipflop;

}

}

A final hint: the last run generates a completely sorted file. This is, however,
determined only by the following split, where one of the temporary files is empty
and the other one is identical to the result file. The above algorithm could be op- tip
timized, so that the last split is no longer needed. For this, it would be necessary
to determine during merging whether the result is sorted. One method of achieving
this is to construct a more ‘intelligent’ output iterator result which determines this
information.


